Fiscal Affairs Department

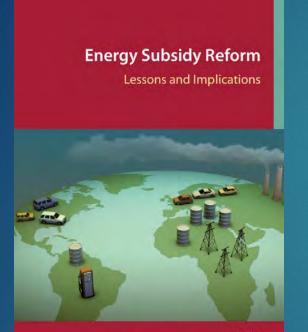
Environmental Reform of Energy Prices in Developing Countries

Thornton Matheson International Monetary Fund New York, December 5, 2016

*The views expressed in this presentation are the authors' and do not reflect those of the International Monetary Fund, its Executive Committee, or its Board.

Why tax energy products?

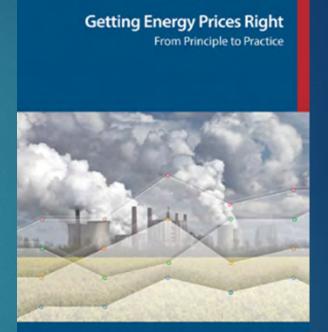
Correct for negative externalities


- Environment: CO₂, local air pollution
- Non-pollution externalities from motor vehicles: congestion, accidents, road damage

Raise revenue to finance public expenditures or reduce other taxes

- Developing countries especially need revenue (large informal sectors)
- But developed countries have heavy, distortive labor and capital tax burdens that could be alleviated with more efficient environmental taxes

Efficient energy pricing reform comprises two steps:


1. Dismantle pre-tax energy subsidies

EDITORS Benedict Clements, David Coady, Stefania Fabrizio, Sanjeev Gupta, Trevor Alleyne, and Carlo Sdralevich

INTERNATIONAL MONETARY FUND

2. Apply appropriate corrective taxes

Ian Parry, Dirk Heine, Eliza Lis, and Shanjun Li

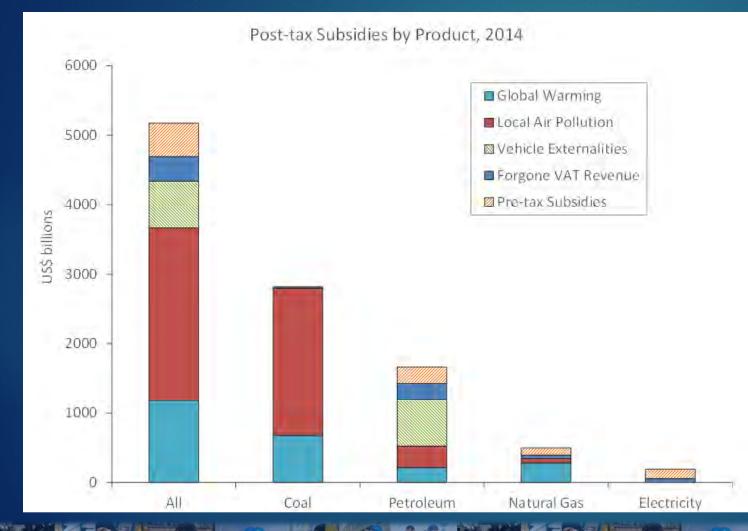
INTERNATIONAL MONETARY FUND

See www.imf.org/environment

Defining Energy Subsidies

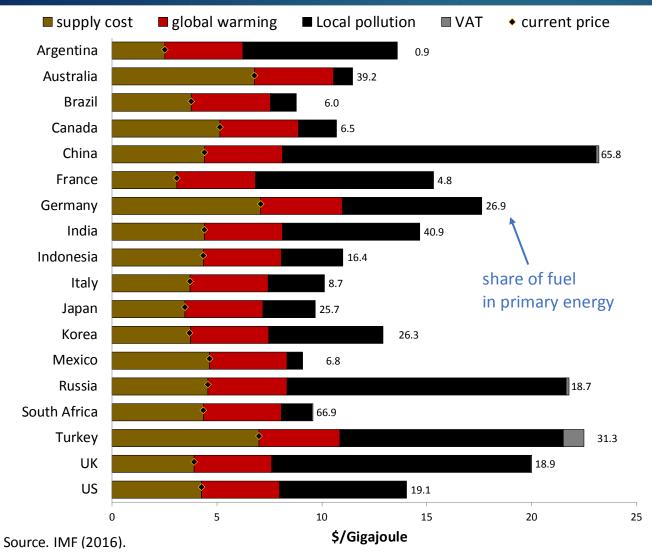
Pretax subsidies exist when energy consumers pay a price below the supply cost of energy

Tax subsidies exist if energy taxes are too low (i.e., fail to correct fully for externalities)


Post-tax subsidies = pre-tax subsidies + tax subsidies.

Numerous countries are dismantling pre-tax subsidies...

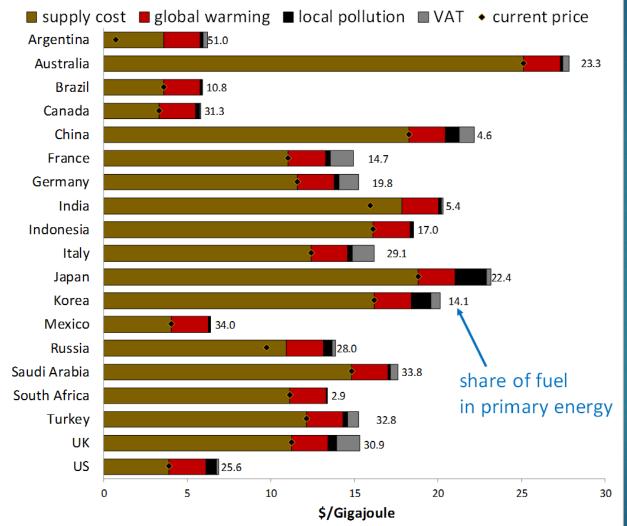
Country	Reform	
Angola	Liberalize domestic fuel prices by 2020	
Egypt	Fuel and gas prices increased 40-78%, electricity prices 20-50% in 2014	
Ghana	Petroleum prices liberalized 2015	
Haiti	Gasoline, diesel, kerosene prices increased 6-8% in 2014, 9-11% in 2015	
India	Gasoline prices liberalized in 2010 and diesel prices in 2014	
Indonesia	Abolished gasoline subsidies and capped diesel subsidies in 2015	
Jordan	Automatic pricing mechanism in 2012, fuel subsidies zero in 2014	
Kuwait	Raised diesel and kerosene prices 210% in 2015 (partially reversed)	
Madagascar	Eliminating fuel subsidies and implementing automatic pricing in 2016	
Malaysia	Prices for gasoline and diesel set monthly to reflect international prices	
Mexico	Domestic fuel prices to be liberalized in 2018	
Morocco	Gasoline, diesel, industrial fuel oil and LPG subsidies eliminated	
Saudi Arabia	Gasoline price increased 50% in 2015, planned increases for diesel, gas, electricity	
Sudan	Plan to eliminate fuel subsidies by 2019 (but fuel price riots in 2013)	
UAE	Fuel price mechanism in 2015 and gasoline/diesel prices increased 25-30%	
Yemen	Gasoline, diesel, kerosene prices increased 20, 50, 100% respectively in 2014	ouro


...but greater use of environmental taxes is needed

Thanks to expenditure reforms, energy subsidies now small relative to untaxed externalities

- Largest energy externality is local air pollution from coal
- Local externalities from air pollution and vehicles are larger than global externalities (GHGs)
- This helps internalize the cost of reducing GHG emissions.

Efficient Coal Prices, 2013

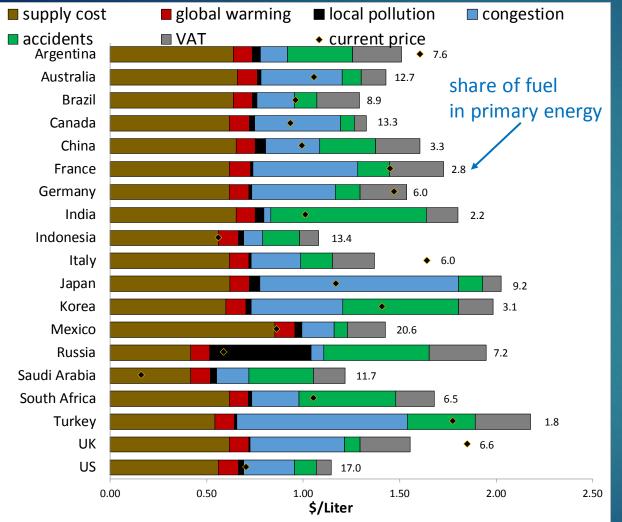


Undercharging for coal use pervasive:

- Prices cover supply cost only
- Environmental costs are large

Ratio of local to global externalities varies widely, as does share of energy use

Efficient Natural Gas Prices, 2013

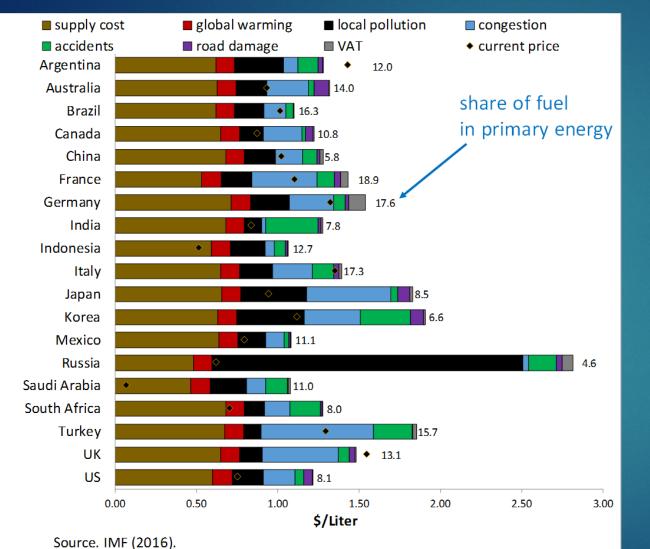


Natural gas is also usually untaxed, and sometimes subsidized

Local pollution costs tend to be small relative to GHG emissions

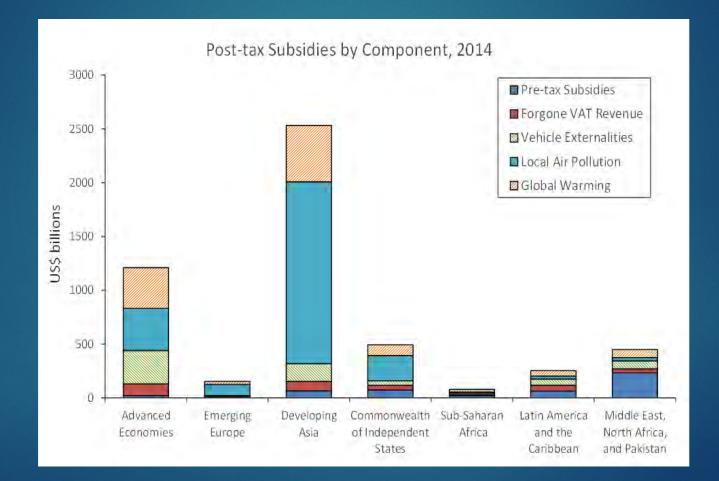
Source. IMF (2016).

Efficient Gasoline Prices, 2013

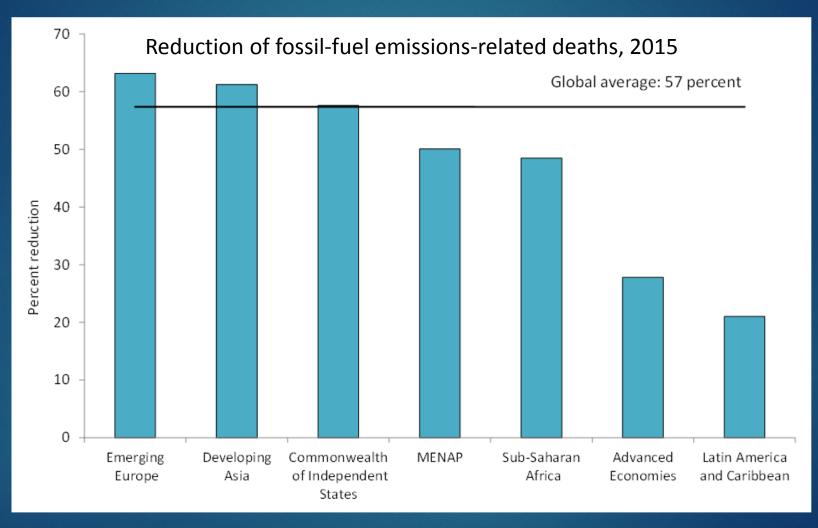


Vehicle fuels are an important tax base in most countries

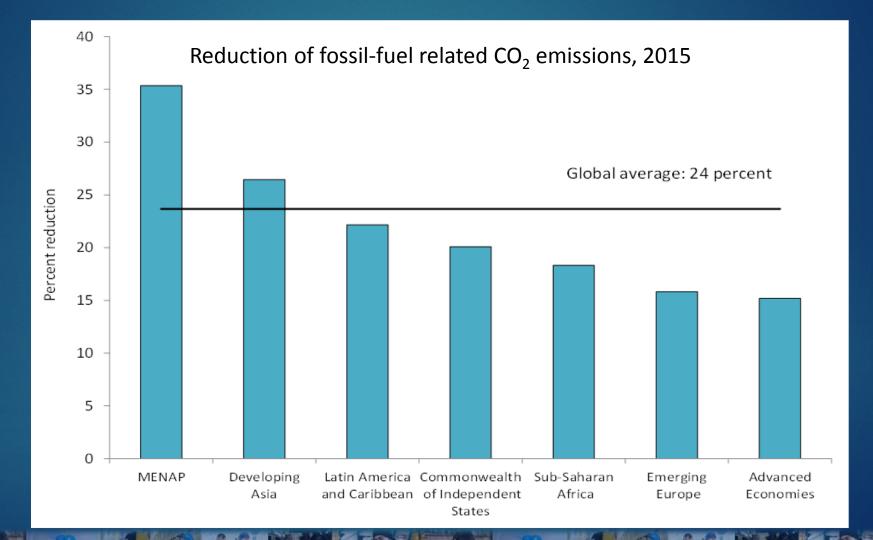
- However, most tax regimes do not fully internalize their externalities
- Local externalities, which are mostly nonenvironmental, far exceed global
- Non-fuel based taxes are better instruments for nonenvironmental externalities

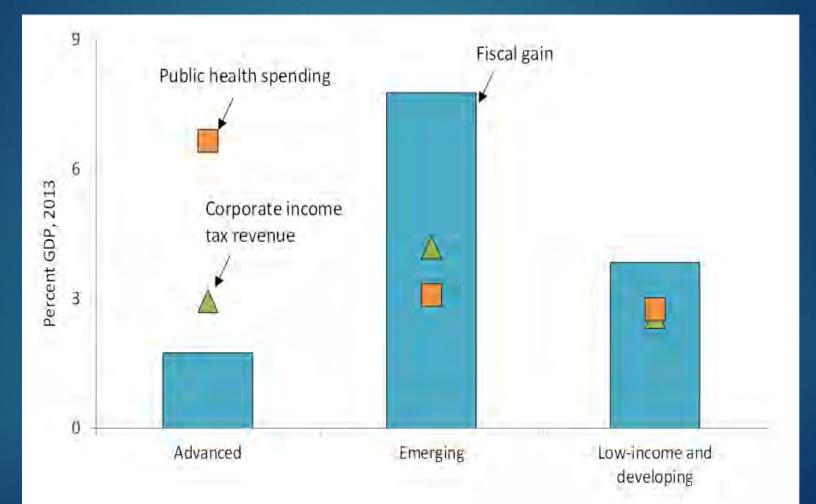

Source. IMF (2016).

Efficient Road Diesel Prices, 2013



- Like gasoline, diesel's local externalities generally far exceed global
- Pollution a much larger share of local diesel externalities than for gasoline
- Diesel subsidies still more common than for gasoline


Developing Asia is greatest source of energy externalities, followed by advanced economies


Efficient energy pricing would yield substantial health benefits...

...and reduce CO2 emissions by an average of 24 percent

The revenues from efficient fuel pricing are significant – particularly for emerging and developing countries

Carbon Pricing

Carbon is being Priced...

Government	year introduced	Price 2015, US\$/ton CO2	Coverage, % of GHGs	Government	year introduced	Price 2015, US\$/ton CO2	Coverage, % of GHGs
	CARBO	N TAXES		Norway	1991	52	50
Br. Columbia	2008	23	70	Portugal	2015	7	25
Chile	2014	5	42	Sweden	1991	131	42
Japan	2012	3	66	UK	2013	24	25
Mexico	2014	1-4	46		TRADING	G SYSTEMS	
South Africa	2016	10	80	Alberta	2007	15	45
Switzerland	2008	86	33	California	2012	13	85
	In the EU ETS			EU	2005	5	45
Denmark	1992	26	45	Kazakhstan	2013	2	50
Finland	1990	60-65	15	Korea	2015	15	68
France	2014	25	35	N. Zealand	2008	13	52
Iceland	2010	10	50	Quebec	2013	13	85
Ireland	2010	22	40	RGGI	2009	5	21
Source. WBG (2014, 2016).							

...but coverage and prices are below what is needed

197 Countries Made Mitigation Pledges in Paris 2015

Country	Mitigation pledge: Reduce	Implied CO ₂ reduction below business as usual in 2030 or thereabouts, %
Argentina	GHGs 15% below BAU in 2030	15
Australia	GHGs 26-28% below 2005 by 2030	52
Brazil	GHGs 37% below 2005 by 2025	63
Canada	GHGs 30% below 2005 by 2030	40
China	CO ₂ /GDP 60-65% below 2005 by 2030	28
France	GHGs 40% below 1990 by 2030	48
Germany	GHGs 40% below 1990 by 2030	40
India	GHG/GDP 33-35% below 2005 by 2030	10
Indonesia	GHGs 29% below BAU in 2030	29
Italy	GHGs 40% below 1990 by 2030	43
Japan	GHGs 25% below 2005 by 2030	33
Korea	GHGs 37% below BAU in 2030	37
Mexico	GHGs 25% below BAU in 2030	25
Russia	GHGs 25-30% below 1990 by 2030	19
S. Arabia	GHGs 130 million tons below BAU by 2030	25
S. Africa	GHGs 398-614 million tons in 2025 and 2030	32
Turkey	GHGs up to 21% below BAU by 2030	21
UK	GHGs 40% below 1990 by 2030	48
US	GHGs 26-28% below 2005 by 2025	32

Typical pledge of G20 countries is around 30% reduction in GHG emissions by 2030

- China may revise its target upward
- Some developing country commitments are much lower, however

Source. UNFCCC and IMF staff calculations

Most G-20 countries will need to impose substantial emissions prices to meet Paris commitments

Argentina Australia Brazil Canada China France Germany India Indonesia Italy Japan Korea Mexico Russia Saudi Arabia South Africa Turkev **United Kingdom United States** 10 20 30 40 50 60 70 80 90 100 0

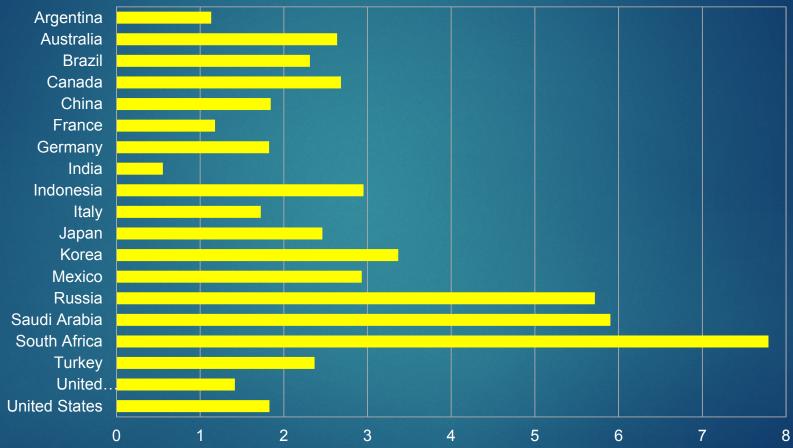
CO2 price, \$ per ton

2030 Target CO₂ Prices (Preliminary), G20 Countries

Source: IMF (2016). Note: 2025 for Brazil and US.

Choice of mitigation instrument is key to success:

 Carbon pricing has key advantages over other options (e.g., energy efficiency or renewables requirements)
Environmentally effective

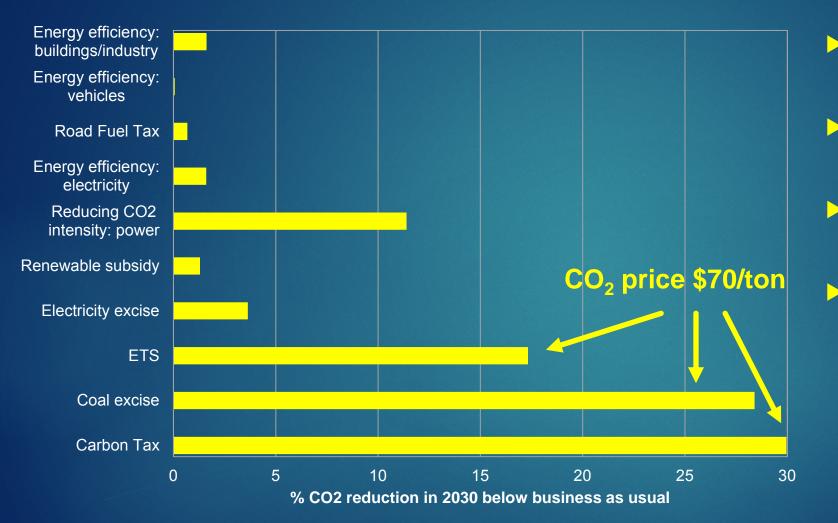

Raises revenue (providing emission rights are not given away)
Efficiently allocates investment (unlike project-by-project funding)

But critical to get design details right...

Carbon Tax vs. ETS

Upstream carbon tax charges carbon content of fuel supply Covers emissions from all sources Straightforward extension of fuel taxes By contrast, emissions trading systems (ETS) are typically downstream ▶ Miss \approx 50% of CO₂ (e.g., vehicles, buildings) Require adequate markets and institutional capacity

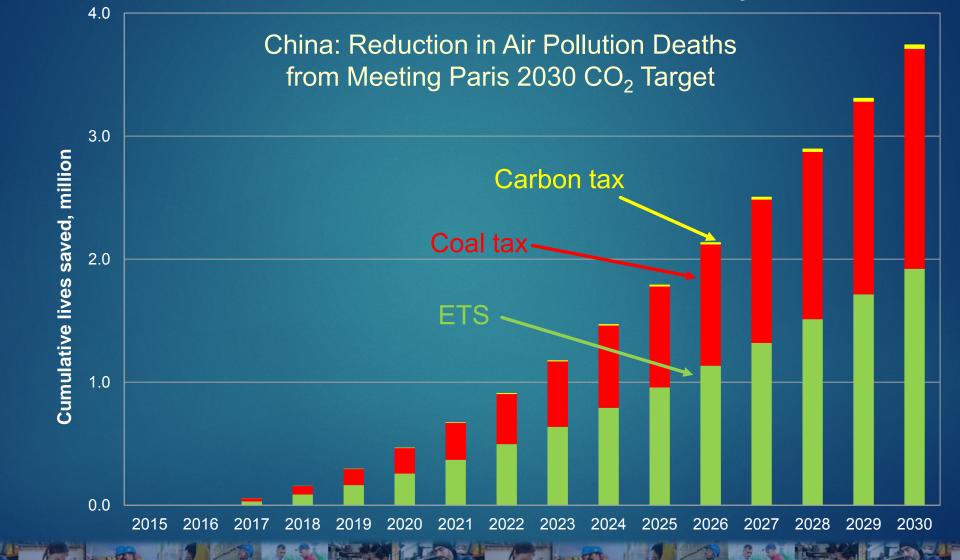
Carbon taxes have the capacity to raise substantial revenues



G20 Revenues (Preliminary), 2030

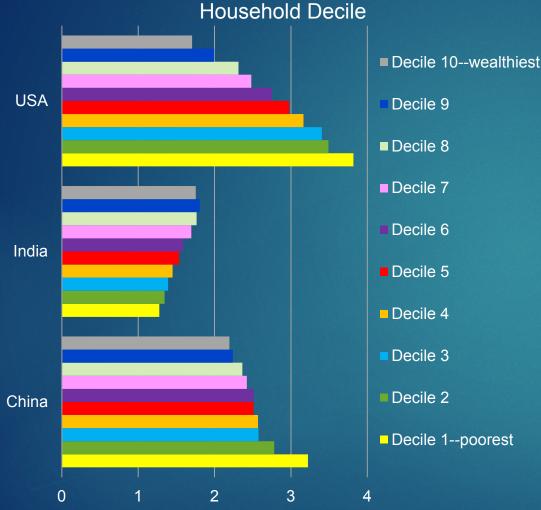
Revenue, percent of GDP

Source: IMF (2016). Note: 2025 for Brazil and US.


China (29% of 2013 emissions) warrants a closer look:

- CT of \$70/ton by 2030 would substantially reduce emissions
 - But tax on coal alone is almost as effective
 - ETS about 40% less effective (excludes small users)
 - Given that China is adopting ETS, recommend combining with upstream coal tax
 - Possibly with credits for downstream users

Source: IMF (2016).


CT or ETS + Coal Tax would dramatically improve health

Source: IMF (2016).

Introduction of carbon tax entails protecting vulnerable groups

Cost Distribution of Phased-in Carbon Tax by

Tax Burden (% of Total Household Consumption)

Business

Assist transition from uneconomic activities

Households

- Carbon tax can be either moderately regressive or progressive, depending on distribution of fuels use
- ► Typically ≤12% of revenues needed to compensate poor households
 - For China, US and India cost is only 6%

Source: IMF (2016)

Thank You!

Please visit www.imf.org/environment